案例 37 龙滩煤矿复杂地质条件薄煤层智能化开采工作面

主要完成单位:四川华蓥山龙滩煤电有限责任公司

一、主要建设内容

(一)建设情况

龙滩矿井地质条件复杂,煤层较薄且厚度变化大,瓦斯突出、复合顶板,地质构造发育,针对复杂地质条件薄煤层智能化开采存在的问题,川煤集团投入大量人力和资金,开展大量研究,由龙滩煤矿和嘉华机械公司、北京天玛智控公司合作,研发了适应复杂煤层的智能化开采成套装备和开采技术,实现了复杂地质条件煤层"无人跟机作业、有人安全巡视"、"自动控制为主、人员干预为辅"的智能化开采模式。

(二) 主要内容

2019 年,龙滩煤矿在 3124S 工作面进行首次智能化工作面探索,控制系统 采用北京天玛智控综采自动化控制系统,综采设备采用成套国产设备;随后在 3122N 和 3122S 工作面采用同一套智能化设备。

当前,龙滩煤矿正在 3122S 工作面实施智能化开采,该工作面走向长度 1486m,倾斜长度 240m;煤厚 0.7~2.57m,平均 1.6m,煤层结构简单至复杂;煤层倾角 4~7°,平均 5°,可采储量为 64.27万 t。工作面布置有上、下顺槽及开切眼,采用 Y 型通风,风巷实施切顶卸压无煤柱自成巷护巷工艺。

1.设备配套情况

智能化综采工作面设备配置如表所示。

序号	设备名称	型号	单位	数量	安装地点
1	电液控液压支架	ZY4000/11/25D	架	130	工作面
2	超前支架	ZTYC24000/20/34D	组	5	机巷
3	采煤机	MG320/710-WD3	台	1	工作面
4	刮板输送机	SGZ760/630	台	1	工作面
5	转载机(含自移)	SZZ764/200	台	1	机巷

表 智能化工作面装备配置表

全国煤矿智能化建设典型案例(2023年)

智能采煤 案例 37

				H 1307 (37)	
序号	设备名称	型号	单位	数量	安装地点
6	破碎机	PLM1000	台	1	机巷
7	乳化液泵	BRW400/37.5	套	1	配液硐室
8	胶带输送机	DSJ80/60/2x160	台	1	机巷
9	皮带自移机尾	DY800	套	1	机巷
10	喷雾泵	BPW500/16	套	1	配液硐室
11	移动变电站	KBSGZY-T-1600/10	台	1	设备列车
12	移动变电站	KBSGZY-T-1250/10	台	1	配液硐室
13	移动变电站	KBSGZY-T-800/10	台	1	变电所
14	移动变电站	KBSGZY-T-630/10	台	1	变电所
15	组合开关	QJZ2-1600/1140 (660)-8	台	3	设备列车
16	顺槽通讯系统	KTC101	套	2	工作面
17	单轨吊	TDY100/14(150 米)	套	1	机巷
18	自动控制系统	SAM	套	1	工作面
19	电液控制系统	SAC	套	1	工作面
20	集成供液系统	SAP	套	1	配液硐室
21	远程供液管道		米	7500	工作面
22	设备列车等		项	1	工作面

智能化综采工作面设备布置如图 1 所示。

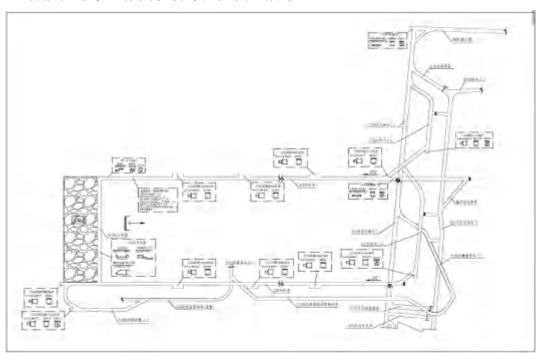


图 1 智能化工作面装备配置图

2.智能化配套情况

控制系统配置有液压支架 SAC 型电液控制系统、综采 SAM 型自动化控制

系统、视频 SAV 监控系统、采煤机 SAS 控制系统、泵站 SAP 集成供液系统、采煤机自动化控制系统、输送设备工况监测系统、工作面语音通讯控制系统各 1 套,以及远程智能控制平台等智能成套装备。

(三) 工作经验

- 1.建立了集中供液净水系统,实现污水处理循环再利用,使智能化供水满足电液控系统的水质使用要求,保证支架使用稳定性,延长使用寿命。该套装备实现了3个工作面开采,总推进长度4500m。
- 2.工作面煤层原始瓦斯含量为 9.55m³/t,通过加大、加密钻孔预抽煤层瓦斯、 深孔预裂爆破等技术手段和走向断层治灾、采空区抽放连续预测等管理措施,使 煤层残余瓦斯含量被控制在 4m³/t,为智能化快速推进打下基础。
- 3.优化了工作面支架与采煤机位置定位,解决了割煤时支架、运输机、采煤机功能自动化配合的问题,实现了工作面自动化开采;优化了刮板机推移装置,机头设计为三节中部槽,卧底量从 29mm 提高到 97mm,解决了薄煤层工作面割煤时煤机卧底量不足与推移困难的问题。
- 4.在劳动组织上,薄煤层智能化开采工作面减少了8人,即减少采煤机司机1人、拉架工2人、刮板机司机1人、转载机司机1人、皮带机司机1人、浮煤清收工2人。现场1名集控司机、2名采煤机支架工(干预)、2名维修工巡视即可保障整个工作面生产系统的正常安全运行。
- 5.在管理过程中,全面推行了设备预防性检修管理方式,落实包机人的保养责任,严格按照设备检修清单进行巡检,按照设备说明书规范操作,变事后维修为事前保养,保障了设备性能稳定。

二、技术特点及先进性

(一) 基础设施

智能化开采全部设备均为国产,安全完全可控。嘉华机械公司为技术总牵头,自主研制了液压支架、超前支架、端头支架,并集成天玛电液控制系统、天地上海采煤机、天地重装刮板机等国内成熟的技术及装备。拥有自主知识产权专利10余件。

(二) 平台软件

装备了千兆铠装光纤,实现井下监控中心与地面调度中心的互联互通。平台 采用独立网段以及 VLAN 技术,在系统与外部数据交换时,采用防火墙及入侵 检测技术,确保平台安全可靠。申请软件著作权登记 3 项:综采工作面采煤机控制系统 V1.0、综采工作面视频监控软件 V1.0、综采工作面自动化系统软件 V1.0。

(三)应用权限

平台采用用户权限控制,具备用户管理、权限管理等安全防护措施,确保平台信息安全。

(四)数据的集成与共享

在顺槽监控中心实现了综采设备数据采集集成、处理、故障诊断(包括对采煤机、液压支架、运输机的故障诊断),实现工作面所有设备集中控制、工况全面检测、视频动态跟踪,并与地面调度中心实现数据共享同步。

(五)数据的监测与收集

实现了采煤机截割速度、深度、位置等数据的监测与收集;液压支架推移步 距数据、油缸受力数据的监测与收集;成套设备工况数据的监测;煤流运输负载 数据的监测等。

(六)数据的分析与处理

通过对支架支撑压力数据的分析实现顶板压力的自动预警;通过对煤流数据的分析实现刮板运输机转速的调控;通过对设备运行数据的分析实现设备故障的自我诊断;通过对采煤机的数据分析实现采煤机记忆割煤。

(七)安全可控

当工作面自动化控制系统出现故障时,各子系统不受开采自动化系统控制,以保证在检修和开采自动化控制系统出现故障时,各子系统能单独开车,确保生产不受影响。

三、智能化建设成效

(一)建设成效

1.工效显著提升。采用智能化开采后,回采工效提高 65.8%,与同类型综合

机械化开采工作面相比,每年多生产商品煤约29万t。

- 2.人员减少明显。采用智能化开采后,单班生产作业人员由以往 18 人减至 10 人,每年节约人工成本 112 万元。
- 3.经济效益突出。相较于传统综采方式,智能化采煤新增销售额 11600 万元,新增利润 1504 万元,新增税收 1508 万元。
- 4.社会效益较大。攻关瓦斯突出、构造复杂条件下的智能化采煤,在西南地区具有极大的推广应用价值。并且改善了职工作业环境,保障了职工作业安全,增加了职工收入效益,增强了职工获得感与幸福感。

(二) 主要亮点

- 1.研发了复杂地质条件 1.2~2.5m 薄及中厚煤层智能化综采工作面成套装备, 实现了"自动控制为主、人员干预为辅"的智能化综采模式,拓展了智能化综采 技术在复杂地质条件煤层中的应用。
- 2.提出了瓦斯灾害盲区判识及多元综合防治方法及"区域一体、局部强化、盲区判识、多元治理"瓦斯灾害综合防治技术管理体系;形成了煤巷底板穿层、工作面顺层、网格钻孔预抽采完全区域消能和构造带深孔爆破、水力压裂局部强化卸压一体化防控技术体系。
- 3.提出了复合顶板切顶沿空留巷方法与分区多介质耦合支护技术,采用超前加固切顶+立柱挂网护帮+滞后封堵加固+收尾砌墙接顶留巷支护新工艺,降低了顶板变形量,有效改善了巷道稳定性,为智能化综采工作面快速推进创造了条件。
- 4.提出了矿井污水处理循环再利用和远距离集中供液系统方案,制定严格的 用水、用液管理规定,同时为整个采区工作面远距离集中供液。
- 5.提出了工作面设备保护方案,在支架前探梁上焊接挡水条,避免了工作面 淋水和支架喷雾水达到支架电液控处;工作面立柱、管缆线等采用聚氯乙烯阻燃 护套进行保护。